An ALE Formulation for Explicit Runge-Kutta Residual Distribution

نویسندگان

  • Luca Arpaia
  • Mario Ricchiuto
  • Rémi Abgrall
چکیده

In this paper we consider the solution of hyperbolic conservation laws on moving meshes by means of an Arbitrary Lagrangian Eulerian (ALE) formulation. In particular we propose an ALE framework for the genuinely explicit residual distribution schemes of (Ricchiuto and Abgrall J.Comput.Phys 229, 2010). The discretizations obtained are thoroughly tested on a large number of benchmarks Key-words: Hyperbolic conservation laws, moving grids, ALE formalism, unstructured grids, residual distribution ∗ Inria Bordeaux Sud-Ouest, Team BACCHUS ha l-0 08 63 15 4, v er si on 2 18 S ep 2 01 3 An ALE formulation for explicit Runge-Kutta Residual Distribution Résumé : Dans ce travail on considère la resolution de lois de conservation sur maillages mobiles par une formulation Arbitrary Lagrangian Eulerian (ALE). On propose en particulier un formalisme ALE pour les schémas RD explicites de (Ricchiuto and Abgrall J.Comput.Phys 229, 2010). Les schémas ainsi obtenus sont testés sur des nombreux benchmarks. Mots-clés : Hyperbolic conservation laws, moving grids, ALE formalism, unstructured grids, residual distribution ha l-0 08 63 15 4, v er si on 2 18 S ep 2 01 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit Runge-Kutta Residual Distribution

In this paper we construct spatially consistent second order explicit discretizations for time dependent hyperbolic problems, starting from a given Residual Distribution (RD) discrete approximation of the steady operator. We explore the properties of the RD mass matrices necessary to achieve consistency in space, and finally show how to make use of second order mass lumping to obtain second ord...

متن کامل

Runge-Kutta residual distribution schemes

We are concerned with the solution of time-dependent nonlinear hyperbolic partial differential equations. We investigate the combination of residual distribution methods with a consistent mass matrix (discretisation in space) and a Runge-Kutta-type time stepping (discretisation in time). The introduced nonlinear blending procedure allows us to retain the explicit character of the time stepping ...

متن کامل

2-stage explicit total variation diminishing preserving Runge-Kutta methods

In this paper, we investigate the total variation diminishing property for a class of 2-stage explicit Rung-Kutta methods of order two (RK2) when applied to the numerical solution of special nonlinear initial value problems (IVPs) for (ODEs). Schemes preserving the essential physical property of diminishing total variation are of great importance in practice. Such schemes are free of spurious o...

متن کامل

Nonstandard explicit third-order Runge-Kutta method with positivity property

When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...

متن کامل

Optimization of the Runge-Kutta iteration with residual smoothing

Iterative solvers in combination with multi-grid have been used extensively to solve large algebraic systems. One of the best known is the Runge-Kutta iteration. Previously [4] we reformulated the Runge-Kutta scheme and established a model of a complete V-cycle which was used to optimize the coefficients of the multi-stage scheme and resulted in a better overall performance. We now look into as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2015